skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jackson, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wildland-urban interface (WUI) fires consume fuels, such as vegetation and structural materials, leaving behind ash composed primarily of pyrogenic carbon and metal oxides. However, there is currently limited understanding of the role of WUI fire ash from different sources as a source of paramagnetic species such as environmentally persistent free radicals (EPFRs) and transition metals in the environment. Electron paramagnetic resonance (EPR) was used to detect and quantify paramagnetic species, including organic persistent free radicals and transition metal spins, in fifty-three fire ash and soil samples collected following the North Complex Fire and the Sonoma-Lake-Napa Unit (LNU) Lightning Complex Fire, California, 2020. High concentrations of organic EPFRs (e.g., 1.4 × 1014 to 1.9 × 1017 spins g−1) were detected in the studied WUI fire ash along with other paramagnetic species such as iron and manganese oxides, as well as Fe3+ and Mn2+ ions. The mean concentrations of EPFRs in various ash types decreased following the order: vegetation ash (1.1 × 1017 ± 1.1 × 1017 spins g−1) > structural ash (1.6 × 1016 ± 3.7 × 1016 spins g−1) > vehicle ash (6.4 × 1015 ± 8.6 × 1015 spins g−1) > soil (3.2 × 1015 ± 3.7 × 1015 spins g−1). The mean concentrations of EPFRs decreased with increased combustion completeness indicated by ash color; black (1.1 × 1017 ± 1.1 × 1017 spins g−1) > white (2.5 × 1016 ± 4.4 × 1016 spins g−1) > gray (1.8 × 1016 ± 2.4 × 1016 spins g−1). In contrast, the relative amounts of reduced Mn2+ ions increased with increased combustion completeness. Thus, WUI fire ash is an important global source of EPFRs and reduced metal species (e.g., Mn2+). Further research is needed to underpin the formation, transformation, and environmental and human health impacts of these paramagnetic species in light of the projected increased frequency, size, and severity of WUI fires. 
    more » « less
  2. The increase in fires at the wildland–urban interface has raised concerns about the potential environmental impact of ash remaining after burning. Here, we examined the concentrations and speciation of iron-bearing nanoparticles in wildland–urban interface ash. Total iron concentrations in ash varied between 4 and 66 mg g −1 . Synchrotron X-ray absorption near-edge structure (XANES) spectroscopy of bulk ash samples was used to quantify the relative abundance of major Fe phases, which were corroborated by transmission electron microscopy measurements. Maghemite (γ-(Fe 3+ ) 2 O 3 ) and magnetite (γ-Fe 2+ (Fe 3+ ) 2 O 4 ) were detected in most ashes and accounted for 0–90 and 0–81% of the spectral weight, respectively. Ferrihydrite (amorphous Fe( iii )–hydroxide, (Fe 3+ ) 5 HO 8 ·4H 2 O), goethite (α-Fe 3+ OOH), and hematite (α-Fe 3+ 2 O 3 ) were identified less frequently in ashes than maghemite and magnetite and accounted for 0–65, 0–54, and 0–50% of spectral weight, respectively. Other iron phases identified in ashes include wüstite (Fe 2+ O), zerovalent iron, FeS, FeCl 2 , FeCl 3 , FeSO 4 , Fe 2 (SO 4 ) 3 , and Fe(NO 3 ) 3 . Our findings demonstrate the impact of fires at the wildland–urban interface on iron speciation; that is, fires can convert iron oxides ( e.g. , maghemite, hematite, and goethite) to reduced iron phases such as magnetite, wüstite, and zerovalent iron. Magnetite concentrations ( e.g. , up to 25 mg g −1 ) decreased from black to gray to white ashes. Based on transmission electron microscopy (TEM) analyses, most of the magnetite nanoparticles were less than 500 nm in size, although larger particles were identified. Magnetite nanoparticles have been linked to neurodegenerative diseases as well as climate change. This study provides important information for understanding the potential environmental impacts of fires at the wildland–urban interface, which are currently poorly understood. 
    more » « less
  3. Abstract Microbial communities comprised of phototrophs and heterotrophs hold great promise for sustainable biotechnology. Successful application of these communities relies on the selection of appropriate partners. Here we construct four community metabolic models to guide strain selection, pairing phototrophic, sucrose-secretingSynechococcus elongatuswith heterotrophicEscherichia coliK-12,Escherichia coliW,Yarrowia lipolytica, orBacillus subtilis. Model simulations reveae metabolic exchanges that sustain the heterotrophs in minimal media devoid of any organic carbon source, pointing toS. elongatus-E. coliK-12 as the most active community. Experimental validation of flux predictions for this pair confirms metabolic interactions and potential production capabilities. Synthetic communities bypass member-specific metabolic bottlenecks (e.g. histidine- and transport-related reactions) and compensate for lethal genetic traits, achieving up to 27% recovery from lethal knockouts. The study provides a robust modelling framework for the rational design of synthetic communities with optimized growth sustainability using phototrophic partners. 
    more » « less
  4. A<sc>bstract</sc> We perform the first search forCPviolation in$$ {D}_{(s)}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. We use a combined data set from the Belle and Belle II experiments, which studye+ecollisions at center-of-mass energies at or near the Υ(4S) resonance. We use 980 fb−1of data from Belle and 428 fb−1of data from Belle II. We measure sixCP-violating asymmetries that are based on triple products and quadruple products of the momenta of final-state particles, and also the particles’ helicity angles. We obtain a precision at the level of 0.5% for$$ {D}^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D + K S 0 K π + π + decays, and better than 0.3% for$$ {D}_s^{+}\to {K}_S^0{K}^{-}{\pi}^{+}{\pi}^{+} $$ D s + K S 0 K π + π + decays. No evidence ofCPviolation is found. Our results for the triple-product asymmetries are the most precise to date for singly-Cabibbo-suppressedD+decays. Our results for the other asymmetries are the first such measurements performed for charm decays. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  5. We measure the branching fraction and C P -violating flavor-dependent rate asymmetry of B 0 π 0 π 0 decays reconstructed using the Belle II detector in an electron-positron collision sample containing 387 × 10 6 ϒ ( 4 S ) mesons. Using an optimized event selection, we find 125 ± 20 signal decays in a fit to background-discriminating and flavor-sensitive distributions. The resulting branching fraction is ( 1.25 ± 0.23 ) × 10 6 and the C P -violating asymmetry is 0.03 ± 0.30 . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  6. A<sc>bstract</sc> We report measurements of the absolute branching fractions$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)$$, where the latter is measured for the first time. The results are based on a 121.4 fb−1data sample collected at the Υ(10860) resonance by the Belle detector at the KEKB asymmetric-energye+ecollider. We reconstruct one$${B}_{s}^{0}$$meson in$${e}^{+}{e}^{-}\to \Upsilon\left(10860\right)\to {B}_{s}^{*}{\overline{B} }_{s}^{*}$$events and measure yields of$${D}_{s}^{+}$$,D0, andD+mesons in the rest of the event. We obtain$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(68.6\pm 7.2\pm 4.0\right)\%$$,$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(21.5\pm 6.1\pm 1.8\right)\%$$, and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{\pm }X\right)=\left(12.6\pm 4.6\pm 1.3\right)\%$$, where the first uncertainty is statistical and the second is systematic. Averaging with previous Belle measurements gives$$\mathcal{B}\left({B}_{s}^{0}\to {D}_{s}^{\pm }X\right)=\left(63.4\pm 4.5\pm 2.2\right)\%$$and$$\mathcal{B}\left({B}_{s}^{0}\to {D}^{0}/{\overline{D} }^{0}X\right)=\left(23.9\pm 4.1\pm 1.8\right)\%$$. For the$${B}_{s}^{0}$$production fraction at the Υ(10860), we find$${f}_{s}=\left({21.4}_{-1.7}^{+1.5}\right)\%$$. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  7. Free, publicly-accessible full text available September 1, 2026